(TECHNICAL DATA) CALCULATION OF BEAM DEFLECTION 1

(TECHNICAL DATA) CALCULATION OF DEFLECTION 2

Load bending moment diagram

	Load bending moment diagram	Bending moment (M)	Deflection (S)
1		M max. = ₩ ℓ	$\delta_{\text{max.}} = \frac{W \ell^3}{3 \text{EI}}$
2		$M_{max.} = \frac{w \ell^2}{2}$	$\delta_{\max} = \frac{wl^4}{8El}$
3	δ	$M_{max.} = \frac{1}{4} W \ell$	$\delta_{\text{max.}} = \frac{W \ell^3}{48 \text{ El}}$
4		$M_{max.} = \frac{1}{8} W \ell$	$\delta_{\rm max.} = \frac{W \ell^3}{192 \rm EI}$
5	δ	$M_{max.} = \frac{1}{8} w \ell^2$	$\delta_{\max} = \frac{5w\ell^4}{384 \text{ El}}$
6	$\delta = \frac{1}{2} \frac{1}{24} \frac{1}{24} \frac{1}{2} \frac{1}{2$	$M_{max.} = \frac{1}{12} w \ell^2$	$\delta_{\max} = \frac{w\ell^4}{384 \text{ EI}}$
7	δ M $\frac{1}{9} w\ell^2$ $\frac{1}{9} w\ell^2$	$M_{max.} = \frac{1}{8} w \ell^2$	$\delta_{\text{max.}} = \frac{w\ell^4}{184.6 \text{ El}}$
Young's modulus (Vertical elastic modulus) $E = \frac{\sigma}{\epsilon}$ ϵ =Deflection σ =Rectangular stressI =Cross-sectional secondary moment			

The circumferential stress σt and radial σr can be expressed as follows at the center. 1.Disk receiving uniform load (σt) max.= (σr) max.= $\pm \frac{3P(3m+1)R^2}{8mt^2}$ and having supported the perimeter P(Uniform load) Also, the central deflection δ max. can be expressed as follows : $\delta \max = \frac{3(m-1)(5m+1)}{16Em^2 t^3} PR^4$ δ max. (Deflection) Wherein, P…Load, R…Radius of plate, t…Plate thickness, (Radius) E····Young's modulus, $\frac{1}{m}$ ···Poisson's ratio The peripheral stress can be expressed as follows : $\sigma t = \pm \frac{3PR^2}{4mt^2} \quad (\sigma r) \max = \pm \frac{3PR^2}{4t^2}$ 2.Disk receiving uniform load and having been fixed to the perimeter and the central one is as follows : (σt) max.= $\sigma r = \pm \frac{3(m+1)PR}{8mt^2}$ P(Uniform load) The central deflection δ max. can be expressed as follows : $\delta \max = \frac{3(m^2 - I)PR^4}{16Em^2 t^3}$ Wherein, P…Load, R…Radius of plate, t…Plate thickness, E····Young's modulus, $\frac{1}{m}$ ···Poisson's ratio (Radius) The central stress can be expressed as follows : 3.Disk receiving uniform P(Uniform load) (σt) max.= (σt) max.= $\pm \frac{3(m+1)P}{2\pi mt^2} \left(\frac{m}{m+1} + \log \frac{R}{r_0} - \frac{m-1}{m+1} \frac{r_0^2}{4R^2}\right)$ load on the concentric -2r0-p circle having supported δmax. B When the central deflection ro is smaller than R, to the perimeter δ max. is expressed as follows : δ max.= $\frac{3(m-1)(3m+1)PR^2}{4\pi Em^2 t^3}$ Uniform loa Ì Wherein, P…Total load on the concentric circle. $P = \pi r_0^2 p$ R…Radius of plate, t…Plate thickness, E…Young's modulus, 1/m…Poisson's ratio The peripheral stress can be expressed as follows: $\sigma_{t} = \pm \frac{3P}{2\pi} \frac{(1 - \frac{\Gamma_{0}^{2}}{2R^{2}})}{\sigma_{t} = \pm \frac{3P}{2\pi t^{2}} \left(1 - \frac{\Gamma_{0}^{2}}{2R^{2}}\right)$ and the central one is as follows: $\sigma_{t} = \sigma_{t} = \pm \frac{3(m+1)P}{2\pi mt^{2}} \left(\log \frac{R}{\Gamma_{0}} + \frac{\Gamma_{0}^{2}}{4R^{2}}\right)$ 4.Disk receiving uniform load on the concentric circle having been fixed to the perimeter P(Uniform load) -2ro ---The central deflection The central deflection δ max. $\Rightarrow \frac{3(m-1)(7m+3)PR^2}{16\pi Em^2 t^3}$ δ max. Wherein, P…Total load on the concentric circle. $P = \pi \Gamma o^2 p$ R (Radius) R…Radius of plate, t…Plate thickness, E…Young's modulus 1/2 m…Poisson's ratio 5.Rectangular plate receiving uniform load The X-axis direction stress at center O can be expressed as follows : $(\sigma x) \text{ max.} = \alpha \frac{Pb^2}{t^2}$ and having supported the perimeter P(Uniform load) The deflection at the center 0 can be expressed as follows : $\delta \max = \beta_1 \frac{Pb^4}{Ft^3}$ Х 4.0 1.0 1.5 2.0 3.0 ∞ a/b 2.440 2.850 2.960 1.150 1.950 3.000 α1 0.709 1.350 1.770 2.140 2.240 2.280 βı E…Young's modulus 2a 6.Rectangular plate receiving uniform load and The stress to X-axis direction at the center A of the longer side can be expressed as follows : having been fixed to the perimeter (σx) max. $= \alpha_2 \frac{Pb^2}{t^2}$ $\delta \max = \beta_2 \frac{Pb^4}{Ft^2}$ a/b 1.0 1.5 2.0 ∞ 1.231 1.817 1.990 2.000 α_2 Α 0.221 0.384 0.443 0.454 ß2 2a E…Young's modulus

Maximum stress, Maximum deflection