Operating Life Calculation for Linear Guides

Operating Life

When Linear Guide is loaded in linear reciprocating motion, scaly damages called flaking appear due to material fatigue as the stress works on the rolling

Rated Life

Rated Life is the total travel distance that 90% of linear guides of the same type can reach, under the same conditions, with no occurrence of flaking damage. Rated
Life can be obtained from the Basic Dynamic Load Rating and the actual load applied on the linear guide, as shown below. $\mathrm{L}=\left(\frac{\mathrm{c}}{\mathrm{p}}\right)^{3} \cdot 50$
Load must be calculated before actully using Linear Guides. To obtain load during linear reciirocating motion, it is necessary to fully consider vibration and impact during motion, and also distsibution status in relation to Linear Guides. So, it is not easy to obtain load by calculation. Operating temperature also critically a affects life. All these conditions
considerede, the above-mentioned calculution formula is as oflows.

$$
\begin{aligned}
& \begin{array}{l}
\text { : Rated Lite (kn) } \\
\text { : Basic Dynamic Load Rating (N) }
\end{array} \\
& \text { : Appioied Load (M) }
\end{aligned}
$$

- Hardness Factor (f f

For Linear Guide applications, sufficient hardness is required for ball contact
shafts. Inappropriate hardness causes less allowable load, resulting in shorter
life.
Please correct the rated life according to the hardness factors.

-Temperature Factor (fT)

If the Linear Guide temperature exceeds $100^{\circ} \mathrm{C}$, the Linear Guide and shaft hardness decreases, res
ata room temperature.
Please correct t the reated life according to the temperature factors.

* Please use Linear Guides under the allowable temperature sho product page

-Contact Factor (fc)

-Contact Factor (fc)
For actual applications. more than 2 blocks are egenerally used per shaft. In
this case, loadd applied to each block varies depending on machining precision this case, load applied do each block varies depending on machining precision
but is not uniformly distributed. As a result, per-block allowable load varies depending on per-shaft Linear Guidd quantityl
Please correct the rated life according to Tabie 1 . Contact Factor.

-Load Factor (fw) To calculate load ap

Lo caluurate load applied to the Linear Guides, other than object weight,
it requires inertia force attributed to however, is difficicult to attain accuruate motion velocity or moment loads. It, and impacts caused during reciprocating motion, other than repeated start-
stop motions. factor helps simplify life calculation.
Table 2. Load
Fig. 1 Hardn

Linear System S

Condition of Use	fiv
No shocksvivibrations, low speed: $15 \mathrm{~m} / \mathrm{min}$. or	1.0~1.5
No significant shocks/vibrations, medium speed: $60 \mathrm{~m} / \mathrm{min}$. or less	2.0
With shocks/vibrations, high speed: $60 \mathrm{~m} / \mathrm{min}$. or more	2.0-3.5

-Applied Load P Calculation Method
When load is applied to a block, convert moment load into applied load by the following formula.

P:Applied I Iod (N) Fiomward Lad (()
Me Alowabe Staic Monent- Prich Diretion $N \cdot m$

Load Calculation
Linear Giudes perform linear reciprocating motion while supporting object weight. Therefore, load applied to Linear Guides varies depending on the center of gravity of the objec thrust torce applied position or changes in speed at start, stop, acceleration and deceleration. For Linear Guide selections, these conditions must te e fully considereed. Table 3. Condition of Use and Load Calculation Formula.

:Applied Load (N) P1, P2, P3 and P4: Load applied to Linear Guides (N)
Speed (mm/sec) ti:Acceleration Time (sec) ts : Deceleration Time (se
Average of Fluctuating Loads
In general, Ioad applied to Linear Guides varies depending on their applications. For example, there are cases at the estart and stop of reciprocating motion,
during constant motion or transfer with/without a work-piece. Therefore, it requires average load under which the life equals to the one under these fluctuating loads.

$\mathrm{Pm} \approx \frac{1}{3}$ (Pmin $+2 \cdot \mathrm{Pmax}$) Pmin: Minimum Fuctuating Load (M)
Pmax: Maxinum Fuctuating Load (M)
 Fig. 5 (a) Pma

Pm $=\sqrt[3]{\frac{1}{\ell}\left(P_{1}^{3} \ell_{1}+P_{2}^{2} \ell_{2} . .+P_{n}^{2} \ell_{n}\right)}$
Pmax: Maximum Fuctuating Load (N)
Fig. 5 Sine Curve-formed Fluctuating Loads

